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is obviously the result of libration motions of the body in region 7% X [C, 1] C S0U (3).
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The permanent rotation of a heavy solid body about its principal axis of inertia
with a fixed point is considered, Stability is investigated with the use of the the-
orem on the stability of Hamiltonian systems with two degrees of freedom in the
general elliptic case, It is shown that in the absence of certain resonance rela-
tionships in the region of necessary stability conditions, which does not coincide
with the region of known sufficient conditions, the first approximation indicates
the existence of stability, except possibly, in the case when the parameters of the
problem lie on some specific manifolds of the parameter space. Subregions that
are free of such exceptional manifolds are indicated in each region of necessary
stability conditions,

Necessary stability conditions for permanent rotation about principal axes of
inertia of a solid body were investigated by Grammel [3]. Sufficient conditions
that matched necessary conditions were obtained by Chetaev in the case of La-
grange integrability [4], and by Rumiantsev in that of Kowalewska integrability
{5]. Permanent rotation of a body with arbitrary mass distribution about its prin-
cipal axis of inertia was considered in [6 — 8], where sufficient stability condi-
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tions were established by Chetaev's method and on the basis of the Routh theo-
rem. Bifurcation of permanent rotations and changes of stability were investi-
gated in [9].

1, We introduce the orthogonal system of coordinates Quxyz, with the (z-axis coin-
ciding with the direction of the gravity force mg acting on the body,and also the system
of coordinates OXYZ whose axes lie along the principal axes of inertia of the body
with respect to the fixed point (. The position of the moving system of coordinates re-
lative to the fixed system Ozyz is specified by the three angles v, o and P defining
three successive rotations, Angle Y defines the rotation about the Oz -axis, angle a
defines the rotation about the new position of the Oux -axis, and angle § the rotation
about the Qy -axis in its new position.

The motion of the solid body will be defined by the variables {, o and P and their
conjugate canonical momenta Py, Pg and PQ.

The Hamiltonian H expressed in terms of canonical variables is of the form
1
H = '2_[ Acosa
1 52 1
B Py + Ccos?a
mg(— xpcosasinP + Yo sina + 2, cosd cos )
Py = —Apcos asin f -+ By sin o + Cr cos o cos P

P, =ApcosfP + Crsin B, Pg = Byg

! (PgcosacosB 4 Pgsinasinp —~ Py sinB)? + (LD

(PycosasinP — PgsinacosB -+ P, cosB)y] —

where Iy, Yy, 29 are the coordinates of the body center of mass in the system of coor-
dinates OXYZ, p, q, r are projections of the vector of the body instantaneous angu-
lar velocity, defined in the usual manner by ¥, & and §§ and their derivatives with re-
spect to time,and A, B and C are the principal momenta of inertia of the body rela-
tive to the fixed point.

In what follows we consider Hamilton equations for the variables o, B, P, and Pg
with function H (1, 1) in which the momentum comesponding to the cyclic coordinate,
Py = | = const.

2, Let us investigate the stability of permanent rotation about the principal axis of
inertia OZ (zy = yo = 0).
The unperturbed motion is defined by the following values of variables:
Ay = ﬁo = aO. = ﬁo. = Os 'lpo. = const
Po =0 =0, 1o =1y, Pog=Pgy =0, Py =Cry=1

In the case of perturbed motion we consider the quantities a, f, P, and Py to be
small and [ to be a fixed number. Then, omitting the additive constant, we represent
the Hamiltonian H (1. 1) in the form of a series in terms of uniform even powers of the
variables q, f, P4 and P'p -

2.1
H = Zl H 2m ( )
m=1
where the first two terms are of the form

H, = %[%(Pa +1(A—E_QB)2+—%'<PB"—ICE‘°°>2+ a,* -+ 0232] (2.2
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Hy = _H A—C (PR — B 4 1340 — 2P, Pyt 4 [P — (2.9)

4 . -, 1 5 2 5
- 1P 21Pga52> + 5 (Plot -ttt — zpﬁas)] —

_%(dzl + 63(2;52—{—- {54)

c—4
al=__%__§)_+a, a2=__(____)+a’ a = mga

If function H, is positive definite, we have stability, hence it is interesting to examine
the case when H, is an alternative function,

We base the investigation of stability with respect to a, B, P. and Py of the zero
solution of Hamilton equations with function H defined by (2, 1) — (2. 3) on the theorem
about the stability of Hamiltonian systems with two degrees of freedom [1, 2]. The for-
mulation of the theorem presupposes that function H has been reduced up to and inclu-
ding its fourth order terms by real canonical transformation to the normal form

2
%2 w,;rj + 4 2 a]hr:,rk—l— 2 [1 (2.4)
J=1 =5

=g+, Oop= 0‘21

where w; and oc;k are real constants, The equilibrium position is, according to Liapunov,
stable, if the inequality
. e = oy 0,7 — 2045 0,05 + gy’ 7= 0 (2.9
is satisfied.
8, We pass to the determination of the invariants w;and oj’ (j, £ = 1, 2) of the
normal form (2, 4). Below besides (2. 4) we shall consider for H the following normal

form : 2 2 o
H = D\ wup; + D) dyupihwy + D) Hp 3.1
j=1 Fi k=1 m=;
#j = loj, oy = — ok

which is derived from (2. 4) by the canonical transformation
1
§ = vz (uj+ 1vj), m;= V~ (u; — Iv;)
First,we reduce the second order terms H, of function H to the normal form. This

can be done by the linear simplicial canonical transformation that is constructed with
the use of eigenvectors of matrix G which appears in equations and variations

dP/dt = GP, P = {(1, ﬁy Pav Pﬁ} (3.2)
A—C 1
d 0 0o =
G = 2 !
__<-C—_|_a> 0 0 —C—
A— C— A4
0 A 2—a ac 10
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Let us consider the case when the roots %;, —¥;, %, and —x, of the characteristic
equation of system (3. 2)

x4 28 + S, = 0 | (3.3)
1 (A—C)y(B—C)\ & A+ B _ aa
si= o[+ =) w+ He] =T

are purely imaginary and there are no equal ones among them. For this it is necessary
and sufficient for the following concurrent inequalities

Sl>0’ S, >0, 8= 8y — Sy >0
to be satisfied.

Let Ap, (%) (m = 1, 2, 3, 4) be the cofactor taken with the opposite sign of the
m-~th element of the last row of matrix G — ®E (E is a unit matrix)

8100 = o (A+B—C), b= 5 (2 +5) (3.5)

8y = (v + S5 m), Meo=x(%+m+ )

The sought transformation is then

P = AQ7 Q = {xu Ty Yy, y2} (3.6)
A1 (1) Ar (%) A1 (1) A (%)
IS 13 - & 8
A (1) Az () Ag (1) Az (%2)
161 J I 5 82
A=l (1) As(x) As () As (%2)
I 182 1 6
Ay (1)) As () Ag (1) Ag (%2)
I 1 - 4 T B

with
187 = 2 (Ay () Ag () — Aq (%)) Ay (),  j=1,2 (3.7
Transformation (3. 6) reduces matrix G to the diagonal form and the quadratic terms

of function H to the normal form. This transformation is canonical and universal, since
by virtue of (3. 6) the expression

P.da + Ppd} — y,dx, — y,dz,

is a total differential. This can be readily verified by taking into account that the con-
stants A, (%;) (3.5) satisfy the relationships

Ay (%) Ag (1) — Ay (%) Ay (%) =0
Ay (%) Ay (1) — Ag (%) Ay (%g) = 0

The transformation (3. 6) is complex-valued, as it must be, if together with the trans-
formation 1 I
& = V5 @+, = Ve @ Iy;) (3.8)
which reduces Hamiltonian H to the real form (2. 4), it is to yield a real-valued canon-
ical transformation, Since the constants A,(%;} and A, (%;) are purely imaginary,while

Ay (%;) and Ay (%;) are real, the transformation o, B, Pa, Pg — &1, E2s M1y N2(3.6),
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(8. 8) is real when the constants §, and §, are real,
Formula (3.7) for /6;* can be represented as follows:

18 = Loy Loy + (—1)0,] (3.9

where the real numbers 0; and 0, are independent of j. It is always possible to obtain
on the basis of (3.9) §;% > (0 by the selection of signs of w; = —JIx;. Hence the
real valuedness of transformation (3, 6), (3. 8) determines whether the frequencies @, in
the normal form (2, 4) are of the same or different sign. The interesting case when

®,®, < 0 is characterized by that the signature of the quadratic form of #, is zero

a, <0, a, <0 (3. 10)

when §,6, == 0, the transformation (3, 6) is nonsingular, which yields the condition
A+ B—(C)? ,

612622 = 4(1)10)2 ( :/-1{‘_2_7‘_5-0_2_)— Sgal = O (3. 11)

Since by assumption inequalities (3.4) are satisfied, hence ®,w,a,5; = 0. The sti-
pulation that condition (3. 11) must be satisfied makes it necessary to exclude from our
considerations the case of disk 4 - B — C == 0. However in that case

2 a 12 a
2 2 —_— —
"= — =5 — R Ha™ == 2 B

which means that ¢, > €, @, > 0 and function H, is positively determined.
Grammel [3] had carried out a similar analysis of necessary conditions of stability

(3. 4) on the basis of which it is possible to separate in the first approximation the follow-

ing stability regions that satisfy inequalities (3. 10):

2y >0, C<B< A, 1> (3.12)
2,<<0, C>A>B, R>0, l,<<l<l (3.13)
20<< 0, A>C>B, R>0, l;<<l<<l, (3.14)
7,<< 0, C<B< A, [>1 (3.15)
where .

R = (C?*+ B* 4+ 34B — 2C (4 + B)

L2 - aC? L2 AAB— 4AC —BC+2 V AB(24—C) 2b—C)

*TB—C’ % C—A—B a

4, To reduce the fourth power terms of function H in (2.3) we use the Birkhoff trans-
formation [10], and introduce the canonical variables i; and v; (j = 1, 2) by formulas

2
oK oK X
Uj = = Y= K:_Z,v,-xj+1£. (4.1)
3 1 =1

where K, is a homogeneous fourth power polynomial of the variables v; and z;.
In the absence of resonance of the form
n(l)l *%’ nl(l)cz = 0 (4. 2)

where n and m are integers that satisfy the equality |n | + |m | = 4, the constant
coefficients of polynomial K, may be chosen so that in the new variables u; and v; all
terms which do not appear in the normal form can be excluded from function #, and,
consequently, the Hamiltonian / will be of the form (3. 1).
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Below we assume that equality (4. 2) does not apply, and consider the general (nonre-
sonance) case,

Applying transformations (3. 6) and (4. 1) to function H,, for the invariants a,;, Gy,
and a,, of normal form, we obtain the following formulas:

aj; =¥y (%) 8,7, =12 (4.3)
Uyg = (Wy (%, %o) + ¥y (%, %) + %\Fa (%) Y3 (%5)) 8,728, 72
cC— 4

Y1) = —7— 82 (2) [B2 (2) (3452 (z) -+ 12A4% (z) + 1PAg% (2) —
B0, (2) B (2) — 218, (2) By (2)) + A (2) (24 (2) A () —
18, (2) Ay ()] — - A57 (2) (384 (2) + 2128, (2) —

511 (1) Ay (2)) -+ - (Be® (2) — Ag? (2))?

¥, (2,9) = St (822 (1) (85 (@) + PAP (@) + BAR () +
As(2) Bo(y) (285(y) Do () — 184(2) Ae(y) — 20As(y) Ag(e))+

20, (z) As () As () (A5 (%) — 2184 (2))] —
D) (94, () (84 0) B4 (8) + P4 () By (9) +

Ay () s (¥) (Ba (y) — SIAL(Y))]
¥y () = A2 (2) — A (2)

The analysis of inequality (2. 5) in its general form is difficult, it is, however, possible
to show that in the regions (3, 12) — (3. 15) D is an analytic function of ! which does
not identically vanish, and that in each of these four regions exists a subregion in which
D = 0 (*). Note that the case of A = B investigated in [4] may be excluded from
our analysis,

6. Let us, first, consider regions (3. 12) and (3. 15) and examine the quantity D as a
function of parameter u = C/l in some ring p, << | p | << pp in the complex plane
u, where p, > pu, > 0 and p,can be arbitrarily small, We shall show that in that

ring D is an analytic function of p and determine the principal part of expansion of
this function in a Laurent series in powers of parameter . The roots %,2 and %,®of the
secular equation (3. 3) can be represented in the form of series in powers of parameter p?

1 A— B — o
M= — el wi-— S0 = ey 6

where %; (u?) and ¥, (u?) are the Taylor parts of related expansions. The value ks® =
C?/132, which is the root o equation S3 = 0, corresponds to the singular point of func-
tions %,2 and %,” closest to p = O ,hence series y, (u?) and %, (p?) converge in the

ircl
cenete 0< Ipl< lpsl (5.2)
For A, (%) (m =1, 2, 3, 4; j = 1, 2) in (3. 5) we have

*) It is shown in the recently published paper [11] that D =£0.
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8169) = g A+ B—0) &) = ™ (@) (59
8 () = S (B — O + i ()

Ag (%) = %—[%ﬂ + a1 (17) ]

Ba(e) = [ B — O+ 1007

84(1) = %y [ggg_fg}_ + X {92)]

A+B—C
Bg(%a) = % [L*i“a?glc— + Xe (Pﬁ)]

where Xpj (W5 (k = 2, 3,4; j = 1, 2) are series in positive integral powers of para-
meter %, The expansions of functions % ,; (u2) converge in zero in the circle (5.2).
Representing §,%and 8,% (3, 7) by Laurent series in the ring p, <7 | u | <C pg, we ob=
tain expansions in which we separate the first terms

4 20(A+B—~0)2
8, = % [‘“ —“(‘%ﬁe“‘“}“‘ + ¥s (Vﬁ)i} (5. 4)
20{(B—CY{A4+ B2 |
8y2 = f;;i [ { i{szj ) % {pﬁ}]

where functions s (1) and %4 (1°) are of the same form as functions v,,; (u?), and
X3 (U) = %4 (0) = 0.
Using formulas (5. 1), (5. 8),(5. 4),(4,3) and (2. 5), we represent [) by a Laurent series

in powers of parameter p® 2 A_B 5.5
2 —A - 2 . 8)
D= g+ % (%)

which converges in the ring p, < [ | << u* with p* = min (C/| 4, |, |ps D,
and where ¥ (i?) is the Taylor part of the expansion, As a function of parameter | =
C/u, series (5. 5) is convergent for all finite / lying outside the circle [ [ | = |3 |.
In the case of (3, 12) all roots of equation (in [) §,%8,% = O which satisfies inequality
{3. 11) and, consequently, all singular points of thé finite plane for function [} lie either
on the imaginary axis, or on the real axis to the left of the singular point I, >> . Hence
in that case the expansion of function y (p) can be analytically continued along thereal
axis of the complex plane [ upto ! = [,. In the case of (3, 15) all singular points of
function D similarly lie either along the imaginary axis or on the real axis to the left
of point [; > O and, consequently, the series y () can be analytically extended along
the real axis up to point /,,

Thus the quantity D is an analytic function for all finite values of [ ~> ( admissible
in the case of (3. 12) and (3. 15). In the considered cases 4 > B > (, hence for fairly
great ! the quantity D is nonzero,

8. Let us consider regions (3. 13) and (3. 14) on the assumption that B == (.
Note that for B = C == A, I, = -}oo, and we have the case considered in Sect, 5.
We shall show that in the interval I; <C { <C [, the quantity Z) is an analytic function
of £ and that in a reasonably small neighborhood of 1,, D =% 0. We introduce the
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small parameter 3 ~> 0 and assume that

I = 1,2 — A2 (6.1

then in the circle | A% | < (I,* — 15%)/C* we have for %;® and ,? expansions in posi-
tive integral powers of A% with

” C—B{4—BR i
ot = W[ LEEBEED Lo ()], = — S () (6D

where the series @; (A%) are such that ¢, (0) = @, (0) = 0. Using (3.5) and (6. 1),
for A,, (x;) we obtain

#;l 1 C—B
M) = o (A+B—0), Ay(w)) = o (xf — k2> (6.3)
! A~ C) (B —
Az () = < (%f —A=c — I NB—0) 7\,2)
A+ B—C
Balws) = o5 (LT E 17 a2 2
We represent the constants §;%in the form
212 (C— B
0t = ot [ZL02 D (A B— O + @y ()] (6.4

218
622 == {0y ( A2§364R + (Pd (}“2))

where functions @; (A%) and @, (A?) are of the same kind as functions @; (A% {(j ==
2). Now, taking into consideration formulas (2. 5), (4. 3) and (6. 1) — (6. 4), for function
D in the rin 2

8 M <A | < (P — Id)/c
where A, > O is an arbitrarily small number, we have the Laurent series in powers of

parameter A3 30t (3C — 4B) (B — A4
D - 16ABCI2 ) P (%)

where ¢ (A%) is the Taylor part of the expansion, When the condition A > B and
C > B issatisfied, the quantity [ in (6. 5) can vanish at small A only for 3C ~—
4B = 0, and it is then possible to show that the first term of series (6. 5) is

12 {3C — 4 A4
@(0) = -—————-—~22(5 {}?f; ) (524 — 110)
which for 4 > B is nonzero,

(6.95)

7. Inthe considered regions (3, 12) = (3. 15) the quantity D is an analytic function
of / and for 1> 1, D 5= 0 hence only a finite number of values of [ exists for every
fixed set of constants A4, &, ¢ and z; for which D = 0.

Let us formulate the obtained result.

Theorem, If the frequencies w; and @, are different and have no fourth order re-
sonances, the necessary stability conditions in the first approximation (2. 6) for permanent
rotation of a heavy solid body about its principal axis of inertia are also the sufficient
conditions, perhaps with the exception of those values of parameters 4, B, C, z, and
! for which D) (2.5) vanishes, In regions (3. 12) = (3. 15) the equation ) = 0 in / has
only a finite number of roots, and each of these regions contains a subregion where Ji=%(.

Stability of permanent rotation with respect to the variables o, f}, P, and Py for
D) 5= ( has been proved on the assumption that the constant [ (or 1,) is not subjected
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to perturbations, If / is imparted a fairly small increment A/, the total perturbed mo-
tion can be represented as that of some other permanent rotation for fixed I, —= [ |- Al
The set of permanent rotations is continuous with respect to /, and each permanent ro-
tation in the fairly small neighborhood of the considered one is conditionally stable, It
is then possible to make the statement about the absolute stability with respect to the
variables a, , P, and Pj ,as was made in the observation in [12] about the character
of stability established on the basis of the Routh's theorem,

When the indicated above conditions are satisfied, permanent rotations are also stable
with respect to the variables p, g, 7, ¥, ¥ and y”.

The author thanks V, V, Rumiantsev for discussing this work and for his remarks,
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